LbCas12a
Cas ID
CLASSIFICATION
DESCRIPTION
Summary
LbCas12a (formerly LbCpf1) is an RNA-guided, DNA-targeting CRISPR-Cas nuclease identified from Lachnospiraceae bacterium 3 . The RNA-guided double-stranded DNA endonuclease activity of LbCas12a was experimentally characterized in 2015, alongside that of other Type V-A/Cas12a orthologs such as AsCas12a and FnCas12a 3 . Like other Cas12a orthologs, LbCas12a catalyzes sequence-specific cleavage of RNA-complementary double-stranded DNA (cis cleavage), as well as indiscriminate cleavage of single-stranded DNA (trans cleavage) at a single active site in the RuvC domain 4 3 5 . LbCas12a is one of the CRISPR-Cas12a endonucleases to be subsequently established as a staple in the CRISPR toolbox 6 7 . Compared to AsCas12a, which is another Cas12a ortholog used in gene-editing applications, LbCas12a has been shown to be more active at a lower range of temperatures from 22°C to 37°C in vitro and in cells 8 9 10 .
Applications
The RNA-guided endonuclease activity of LbCas12a has been harnessed for biotechnological applications in healthcare, agriculture, and fundamental research 11 12 13 6 14 . Due to LbCas12a’s increased activity at temperatures below 37°C compared to other Cas12a orthologs, LbCas12a has been utilized for editing in plants 8 9 10 . Some genome-editing applications include increasing tomato salinity tolerance 15 and gene replacement for herbicide resistance in rice at Cas12 target sites |reference_idx|, but several examples may be found in the experimental section of CasPEDIA.
Experimental Considerations
When utilizing LbCas12a and other Cas12a orthologs, such as AsCas12a, MbCas12a and FnCas12a, one should take into account several experimental considerations. Multiple software tools, such as CHOPCHOP 16 and CRISPOR 17 , exist for guide design 18 to help identify suitable target sites throughout the genomes of several model organisms. LbCas12a recognizes a 5'-TTTV-3' PAM on the non-target strand of dsDNA 3 . LbCas12a shares a preference for T-rich PAMs with other Cas12a orthologs, unlike Cas9a’s preference for G-rich PAM sequences 19 . Staggered cuts generated by Cas12a have been reported to result in larger deletions than those of SpyCas9 |reference_idx|20 21 . Furthermore, Cas12a’s ability to process its own crRNA has enabled multiplexed editing with multiple crRNAs in a single RNA transcript 22 23 . When designing LbCas12a’s crRNA scaffold sequence, one should consider the promoter and model organism. To accommodate transcription initiation at RNA polymerase III (Pol III) or T7 promoters, an additional single or dinucleotide ‘G’ can be appended to the 5’ end of the crRNA scaffold sequence reported in LbCas12a’s sequences section 24 13 . Increased editing efficiencies have also been reported with pre-crRNAs compared to mature crRNAs in rice, and crRNAs with additional 5’ nucleotides have been designed for Cas12a processing 25 24 . Variants of LbCas12a have been engineered for novel PAM-targeting specificities, activity at a wider range of temperatures, and enhanced on-target nuclease activity 26 27 28 26 29 .
Tool_Type | Tool | Is_Tool_Applicable | Notes | Citation |
---|---|---|---|---|
NaN | RNP | Yes | Established to work as WT and with variants with improved nuclease activity | 30 |
NaN | Lenti | Yes | Activity profiling of LbCas12a and AsCas12a | 19 |
NaN | AAV | Yes | LbCas12a and crRNA was packaged within an AAV serotype 9 vector and adminstered to mouse eye by intravitreal injection | 12 |
NaN | LNP | Yes | Delivery of crRNA and mRNA into mice livers | 13 |
NaN | EDV | Yes | In principle, but not yet demonstrated | NaN |
NaN | Guide_Design_Algorithm | NaN | CRISPOR; CHOPCHOP guide design algorithims | 17 16 |
NaN | Other_Experimental_Notes | NaN | Can produce multiple gRNA on one promoter to facilitate easy targeting of multiple loci. | 23 |
Application_Type | Description | Pharmaceutical_or_Product_Name | NCT | Responsible_Party | Delivery_Mechanism | In_Vivo_or_Ex_Vivo_Editing | Citation_or_Publications |
---|---|---|---|---|---|---|---|
Plant_Agriculture | LbCas12a genome editing in Nicotiana benthamiana, Solanum lycopersicum, Arabidopsis thaliana | NaN | NaN | NaN | Stable transformation of Arabidopsis thaliana by Agrobacterium tumefaciens | In vivo | 31 |
Plant_Agriculture | LbCas12a-mediated genome editing in soybean and tobacco protoplasts | NaN | NaN | NaN | PEG-mediated RNP delivery to soybean and tobacco protoplasts | Ex vivo | 10 |
Mouse | LbCas12a targeting of the PCSK9 gene in mouse hepatocytes to reduce of serum cholesterol levels | NaN | NaN | NaN | LbCas12a RNP delivery with a DNA nanoclew (NC)–based carrier. LbCas12a RNP-NC was additionally coated with a cationic layer of polyethyleneimine (PEI) as well as an anionic polymer layer. | In vivo | 13 |
Mouse | LbCas12a editing of Vegfa or Hif1a in mouse retinal and retinal pigment epithelium (RPE) cells. LbCas12a editing was demonstrated to reduce the area of laser-induced choroidal neovascularization. | NaN | NaN | NaN | AAV serotype 9 vector, adminstered to the mouse eye by intravitreal injection | In vivo | 12 |
Yeast | Multiplexed genome editing by LbCas12a in S. cerevsisiae, where three genes of the heterologous carotenoid pathway were integrated into three different genomic loci | NaN | NaN | NaN | Chemical transformation of S. cerevisiae | NaN | 32 |
Tool_Type | Tool_Name | Description | Citation |
---|---|---|---|
Nucleic acid detection diagnostic | NaN | DNA endonuclease-targeted CRISPR trans reporter (DETECTR): Attomolar sensitivity DNA detection; Detection of Severe fever with thrombocytopenia syndrome virus (SFTSV) infection; Detection of Cancer associated hotspots | 4 33 34 |
Transcriptional repression | dLbCpf1–SRDX | dLbCpf1 (D832A) was fused to three copies of the SRDX transcriptional repressor, and reported to repress expression of the non-coding RNA miR159b in Arabidopsis. | 35 |
Adenine base editor | LbABE8e | Catalytically dead LbCas12a was fused to an evolved version of Escherichia coli tRNA deaminase (a monomeric TadA-8e variant). LbCas12a-mediated adenine base editing was demonstrated at target sites with TTTV PAMs 36 , as well as target sites with noncanonical PAMS when TadA-8e was fused to LbCas12a with evolved PAM recognition preferences 35 . | 36 35 |
Variant_Name | Description |
---|---|
Lb2-KY (C1003Y, Q571K) | An engineered variant of LbCas12a with improved nuclease activity and broadened PAM targeting (CTTN) 37 |
LbCas12a-RV(G146R/R182V), LbCas12a-RRV (G146R, D156R, E795Q), and LbCas12a-RVQ (G146R/R182V/E795Q) | Engineered LbCas12a variants were demonstrated to have enhanced editing efficiencies in human cells (LbCas12a-RVQ), rice and tomato protoplasts (LbCas12a-RV), and stably transformed rice and poplar plants (LbCas12a-RRV) 38 |
LbCas12a RVRR (G532R, K538V, Y542R, K595R), impLbCas12a (D156R, G532R, K538V, Y542R, K595R) | Broadened PAM recognition ((TAYV, TGTV TTCV, CCCV and TCCV) was demonstrated by the LbCas12a RVRR variant. However, the LbCas12a RVRR variant was demonstrated to cleave at more off-target sites than WT LbCas12a. "Improved" impLbCas12a (LbCas12a RVRR with an additional D156R mutation), is reported to to have enhanced activity and a further broadened PAM targeting specificity to include NTTV PAMs. Additional LbCas12a variants with altered PAM recognition preferences were reported. 27 |
LbCas12a-Plus (D156R, R883K, R887A) | LbCas12a variant demonstrated to have enhanced activity and specificity 26 |
ttLbCas12a (D156R) | A "temperature-tolerant (tt)" LbCas12a variant which demonstrated increased editing activity in Arabidopsis thaliana from 22°C and 28°C 28 |
mut2B-W (K623R, F863V, Q1108L, S1132T, S1214P), mut2C-W (F863V, F884L, D952N, C965Y, V1011A, Q1108L, A1113V, S1132T, S1214P), and mut2C-WF (F863V, D952N, C965Y, V1011A, Q1108L, A1113V, S1132T, S1214P) | Hyper-effective (HypE) LbCas12a variants with enhanced endonuclease activity, demonstrated in vitro and in genome editing with HEK293T cells. These variants are hypothesized to adopt a more open conformation 29 |
NUCLEOTIDE SEQUENCE
PROTEIN STRUCTURE
PFAM ID | Description |
---|---|
PF18510 | NUC |
PF18501 | REC1 |
PF18516 | RuvC_1 |
Feature Type | Start | End | Ligand | Description | Citations |
---|---|---|---|---|---|
Domain | 49 | 280 | Cas12a REC1 | ||
Domain | 810 | 1225 | Cas12a RuvC nuclease | ||
Domain | 1004 | 1166 | Cas12a nuclease | ||
Region | 47 | 51 | Binds crRNA alone and in crRNA-target DNA heteroduplex | ||
Region | 154 | 158 | Binds crRNA alone and in crRNA-target DNA heteroduplex | ||
Region | 256 | 260 | Binds DNA in crRNA-target DNA heteroduplex | ||
Region | 278 | 281 | Binds crRNA in crRNA-target DNA heteroduplex | ||
Region | 516 | 520 | Binds crRNA | ||
Region | 707 | 710 | Binds crRNA | ||
Region | 719 | 720 | Binds crRNA | ||
Region | 781 | 789 | Binds crRNA | ||
Coiled coil | 77 | 107 | |||
Active site | 759 | 759 | For pre-crRNA processing | ||
Active site | 768 | 768 | For pre-crRNA processing | ||
Active site | 785 | 785 | For pre-crRNA processing | ||
Active site | 832 | 832 | For DNase activity of RuvC domain | ||
Active site | 925 | 925 | For DNase activity of RuvC domain | ||
Active site | 1180 | 1180 | For DNase activity of RuvC domain | ||
Site | 16 | 16 | Binds crRNA alone and in crRNA-target DNA heteroduplex | ||
Site | 272 | 272 | Binds DNA in crRNA-target DNA heteroduplex | ||
Site | 286 | 286 | Binds DNA in crRNA-target DNA heteroduplex | ||
Site | 514 | 514 | Binds DNA in crRNA-target DNA heteroduplex | ||
Site | 538 | 538 | Binds DNA protospacer adjacent motif (PAM) | ||
Site | 591 | 591 | Binds Target strand DNA | ||
Site | 595 | 595 | Binds PAM | ||
Site | 601 | 601 | Binds Target strand DNA | ||
Site | 740 | 740 | Binds Target strand DNA; via amide nitrogen | ||
Site | 747 | 747 | Binds crRNA |
PDB_IDs | Domains | Active_Sites |
---|---|---|
5ID6 | RuvC | D850;E943;D1198 |
PDB ID: 5XUS
- 1. Kempton, H. R., Goudy, L. E., Love, K. S., & Qi, L. S. (2020). Multiple Input Sensing and Signal Integration Using a Split Cas12a System. Molecular Cell, 78(1), 184-191.e3. https://doi.org/10.1016/j.molcel.2020.01.016
- 2. Yamano, T., Zetsche, B., Ishitani, R., Zhang, F., Nishimasu, H., & Nureki, O. (2017). Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. Molecular Cell, 67(4), 633-645.e3. https://doi.org/10.1016/j.molcel.2017.06.035
- 3. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., & Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163(3), 759–771. https://doi.org/10.1016/j.cell.2015.09.038
- 4. Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439. https://doi.org/10.1126/science.aar6245
- 5. Dong, D., Ren, K., Qiu, X., Zheng, J., Guo, M., Guan, X., Liu, H., Li, N., Zhang, B., Yang, D., Ma, C., Wang, S., Wu, D., Ma, Y., Fan, S., Wang, J., Gao, N., & Huang, Z. (2016). The crystal structure of Cpf1 in complex with CRISPR RNA. Nature, 532(7600), 522–526. https://doi.org/10.1038/nature17944
- 6. Bandyopadhyay, A., Kancharla, N., Javalkote, V. S., Dasgupta, S., & Brutnell, T. P. (2020). CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.584151
- 7. Paul, B., & Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 43(1), 8–17. https://doi.org/10.1016/j.bj.2019.10.005
- 8. Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., & Joung, J. K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 37(3), 276–282. https://doi.org/10.1038/s41587-018-0011-0
- 9. Malzahn, A. A., Tang, X., Lee, K., Ren, Q., Sretenovic, S., Zhang, Y., Chen, H., Kang, M., Bao, Y., Zheng, X., Deng, K., Zhang, T., Salcedo, V., Wang, K., Zhang, Y., & Qi, Y. (2019). Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 17(1). https://doi.org/10.1186/s12915-019-0629-5
- 10. Kim, H., Kim, S.-T., Ryu, J., Kang, B.-C., Kim, J.-S., & Kim, S.-G. (2017). CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications, 8(1). https://doi.org/10.1038/ncomms14406
- 11. Li, S.-Y., Cheng, Q.-X., Wang, J.-M., Li, X.-Y., Zhang, Z.-L., Gao, S., Cao, R.-B., Zhao, G.-P., & Wang, J. (2018). CRISPR-Cas12a-assisted nucleic acid detection. Cell Discovery, 4(1). https://doi.org/10.1038/s41421-018-0028-z
- 12. Koo, T., Park, S. W., Jo, D. H., Kim, D., Kim, J. H., Cho, H.-Y., Kim, J., Kim, J. H., & Kim, J.-S. (2018). CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04175-y
- 13. Sun, W., Wang, J., Hu, Q., Zhou, X., Khademhosseini, A., & Gu, Z. (2020). CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 6(21). https://doi.org/10.1126/sciadv.aba2983
- 14. Ciurkot, K., Gorochowski, T. E., Roubos, J. A., & Verwaal, R. (2021). Efficient multiplexed gene regulation in Saccharomyces cerevisiae using dCas12a. Nucleic Acids Research, 49(13), 7775–7790. https://doi.org/10.1093/nar/gkab529
- 15. Vu, T. V., Sivankalyani, V., Kim, E., Doan, D. T. H., Tran, M. T., Kim, J., Sung, Y. W., Park, M., Kang, Y. J., & Kim, J. (2020). Highly efficient homology‐directed repair using CRISPR/Cpf1‐geminiviral replicon in tomato. Plant Biotechnology Journal, 18(10), 2133–2143. Portico. https://doi.org/10.1111/pbi.13373
- 16. Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., & Valen, E. (2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research, 47(W1), W171–W174. https://doi.org/10.1093/nar/gkz365
- 17. Concordet, J.-P., & Haeussler, M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 46(W1), W242–W245. https://doi.org/10.1093/nar/gky354
- 18. Hanna, R. E., & Doench, J. G. (2020). Design and analysis of CRISPR–Cas experiments. Nature Biotechnology, 38(7), 813–823. https://doi.org/10.1038/s41587-020-0490-7
- 19. Kim, H. K., Song, M., Lee, J., Menon, A. V., Jung, S., Kang, Y.-M., Choi, J. W., Woo, E., Koh, H. C., Nam, J.-W., & Kim, H. (2016). In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nature Methods, 14(2), 153–159. https://doi.org/10.1038/nmeth.4104
- 20. Yin, X., Biswal, A. K., Dionora, J., Perdigon, K. M., Balahadia, C. P., Mazumdar, S., Chater, C., Lin, H.-C., Coe, R. A., Kretzschmar, T., Gray, J. E., Quick, P. W., & Bandyopadhyay, A. (2017). CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports, 36(5), 745–757. https://doi.org/10.1007/s00299-017-2118-z
- 21. Meshalkina, D. A., Glushchenko, A. S., Kysil, E. V., Mizgirev, I. V., & Frolov, A. (2020). SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos. Genes, 11(7), 740. https://doi.org/10.3390/genes11070740
- 22. Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A., & Charpentier, E. (2016). The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 532(7600), 517–521. https://doi.org/10.1038/nature17945
- 23. Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D., & Platt, R. J. (2019). Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nature Methods, 16(9), 887–893. https://doi.org/10.1038/s41592-019-0508-6
- 24. Kleinstiver, B. P., Tsai, S. Q., Prew, M. S., Nguyen, N. T., Welch, M. M., Lopez, J. M., McCaw, Z. R., Aryee, M. J., & Joung, J. K. (2016). Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology, 34(8), 869–874. https://doi.org/10.1038/nbt.3620
- 25. Xu, R., Qin, R., Li, H., Li, D., Li, L., Wei, P., & Yang, J. (2017). Generation of targeted mutant rice using a
CRISPR ‐Cpf1 system. Plant Biotechnology Journal, 15(6), 713–717. Portico. https://doi.org/10.1111/pbi.12669
- 26. Huang, H., Huang, G., Tan, Z., Hu, Y., Shan, L., Zhou, J., Zhang, X., Ma, S., Lv, W., Huang, T., Liu, Y., Wang, D., Zhao, X., Lin, Y., & Rong, Z. (2022). Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity. BMC Biology, 20(1). https://doi.org/10.1186/s12915-022-01296-1
- 27. Tóth, E., Varga, É., Kulcsár, P. I., Kocsis-Jutka, V., Krausz, S. L., Nyeste, A., Welker, Z., Huszár, K., Ligeti, Z., Tálas, A., & Welker, E. (2020). Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Research, 48(7), 3722–3733. https://doi.org/10.1093/nar/gkaa110
- 28. Schindele, P., & Puchta, H. (2019). Engineering CRISPR/LbCas12a for highly efficient, temperature‐tolerant plant gene editing. Plant Biotechnology Journal, 18(5), 1118–1120. Portico. https://doi.org/10.1111/pbi.13275
- 29. Ma, E., Chen, K., Shi, H., Stahl, E. C., Adler, B., Trinidad, M., Liu, J., Zhou, K., Ye, J., & Doudna, J. A. (2022). Improved genome editing by an engineered CRISPR-Cas12a. Nucleic Acids Research, 50(22), 12689–12701. https://doi.org/10.1093/nar/gkac1192
- 30. Zhang, L., Zuris, J. A., Viswanathan, R., Edelstein, J. N., Turk, R., Thommandru, B., Rube, H. T., Glenn, S. E., Collingwood, M. A., Bode, N. M., Beaudoin, S. F., Lele, S., Scott, S. N., Wasko, K. M., Sexton, S., Borges, C. M., Schubert, M. S., Kurgan, G. L., McNeill, M. S., … Vakulskas, C. A. (2021). AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24017-8
- 31. Bernabé‐Orts, J. M., Casas‐Rodrigo, I., Minguet, E. G., Landolfi, V., Garcia‐Carpintero, V., Gianoglio, S., Vázquez‐Vilar, M., Granell, A., & Orzaez, D. (2019). Assessment of Cas12a‐mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17(10), 1971–1984. Portico. https://doi.org/10.1111/pbi.13113
- 32. Verwaal, R., Buiting-Wiessenhaan, N., Dalhuijsen, S., & Roubos, J. A. (2017). CRISPR/Cpf1 enables fast and simple genome editing ofSaccharomyces cerevisiae. Yeast, 35(2), 201–211. Portico. https://doi.org/10.1002/yea.3278
- 33. Park, B. J., Yoo, J. R., Heo, S. T., Kim, M., Lee, K. H., & Song, Y.-J. (2022). A CRISPR-Cas12a-based diagnostic method for multiple genotypes of severe fever with thrombocytopenia syndrome virus. PLOS Neglected Tropical Diseases, 16(8), e0010666. https://doi.org/10.1371/journal.pntd.0010666
- 34. Kohabir, K. A. V., Nooi, L. O., Brink, A., Brakenhoff, R. H., Sistermans, E. A., & Wolthuis, R. M. F. (2023). In Vitro CRISPR-Cas12a-Based Detection of Cancer-Associated TP53 Hotspot Mutations Beyond the crRNA Seed Region. The CRISPR Journal, 6(2), 127–139. https://doi.org/10.1089/crispr.2022.0077
- 35. Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., Kirkland, E. R., Zhang, Y., & Qi, Y. (2017). A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 3(3). https://doi.org/10.1038/nplants.2017.18
- 36. Richter, M. F., Zhao, K. T., Eton, E., Lapinaite, A., Newby, G. A., Thuronyi, B. W., Wilson, C., Koblan, L. W., Zeng, J., Bauer, D. E., Doudna, J. A., & Liu, D. R. (2020). Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 38(7), 883–891. https://doi.org/10.1038/s41587-020-0453-z
- 37. Tran, M. H., Park, H., Nobles, C. L., Karunadharma, P., Pan, L., Zhong, G., Wang, H., He, W., Ou, T., Crynen, G., Sheptack, K., Stiskin, I., Mou, H., & Farzan, M. (2021). A more efficient CRISPR-Cas12a variant derived from Lachnospiraceae bacterium MA2020. Molecular Therapy - Nucleic Acids, 24, 40–53. https://doi.org/10.1016/j.omtn.2021.02.012
- 38. Zhang, L., Li, G., Zhang, Y., Cheng, Y., Roberts, N., Glenn, S. E., DeZwaan-McCabe, D., Rube, H. T., Manthey, J., Coleman, G., Vakulskas, C. A., & Qi, Y. (2023). Boosting genome editing efficiency in human cells and plants with novel LbCas12a variants. Genome Biology, 24(1). https://doi.org/10.1186/s13059-023-02929-6