Type II
Summary
Cas9 is the most widely used gene editor of the CRISPR family and the first CRISPR nuclease with demonstrated programmable RNA-guided activity 1. The conventional classification divides type II CRISPR-Cas, or Cas9, systems into subtypes II-A, II-B, and II-C, and is based on multiple criteria. However, the basis of this classification is the presence of signature proteins in the CRISPR-Cas9 locus and the locus organization 2,3,4,5,6. A finer division of Type II proteins into clades I-X based on Cas9 phylogeny, which reproduces the subtypes II-A,B,C separation into groups of clades, was previously published 7. Finally, recent studies have reported functional characterization and gene editing ability of compact RNA-guided ancestors of Cas9 proteins, which are referred to as IscBs and HEAROs. In addition, a new subtype II-D that includes compact Cas9s homologous to these ancestors has been proposed 8,9,10.
For convenience, CasPEDIA phylogenetic tree integrates two classifications of Cas9 according to subtypes A,B,C, and to phylogenetic clades I-X, and in addition, includes clade U with type II-D, and IscB, HEARO RNA-guided nucleases.
The phylogenetic tree was generated with Cas9 sequences acquired from (Gasiunas et al. 2020) with minor modifications, sequences from public databases, from selected studies with in vivo editing data 11,12,13,14,15,16,17,18,19,8,9, and from the literature on published Cas9 and IscB structures 20,21,22,23,24,25,26,27,27,28,29.
Phylogeny Download
Download the phylogenetic reconstruction source of Type II members
Download the multiple sequence alignment source of the Type II phylogenetic reconstruction
Type V
Summary
Cas12 enzymes are RNA-guided nucleases and are the defining component of Type V CRISPR systems 30. These enzymes appear to have evolved from TnpB proteins encoded within IS200/IS605 family mobile genetic elements, potentially on multiple occasions 30,31,8. Of the Class 2 CRISPR enzymes, Cas12 proteins appear to be the most biochemically diverse by Cas enzymatic classification and thus suited for a wide variety of applications including, but also beyond, gene editing 32,33,34. With the notable exception of Cas12k which directs transposition of a Tn7 transposase, the activity of these enzymes tends to be self-contained and not reliant on additional proteins 34. In addition to being a biochemically diverse family, they exhibit great genetic diversity, with some subtypes forming polyphyletic clades (ex. Cas12f) 35. As within-subfamily clades continue to be characterized biochemically, researchers have (and will likely continue to) find divisions of enzymatic activity, such as recently reported with Cas12c2 and Cas12a2 36,37,38.
The above tree was produced using data from the most recent phylogenetic analysis of Cas12 proteins 30as well as recent reports of Cas12 enzymes since then including Cas12j (previously known as CasPhi), CasLambda and Cas12L 39,40,41and Cas12 ancestor, TnpB 31. In general Cas12 proteins are labeled a to n in order of discovery/characterization except for CasPhi and CasLambda owing to their viral origin 39,40. Some Cas12 proteins without known function appear widespread and have only recently been characterized: Cas12k (Cas12 U5), Cas12m (Cas12 U1), and Cas12n (Cas12 U4) 34,42,43. Two remaining Cas12 families are to-date uncharacterized, Cas12 U2 and Cas12 U3. Only complete Cas12 sequences (using non-truncated RuvC domains) were used. From these sequences, Cas12 proteins were aligned using MUSCLE, trees constructed with IQ-TREE, rooted against TnpB, and visualized with iTOL 44,45,46. Trees were manually curated by pruning errant Cas12 leaves.
Phylogeny Download
Download the phylogenetic reconstruction source of Type V members
Download the multiple sequence alignment source of the Type V phylogenetic reconstruction
Type VI
Summary
All known Cas13 enzymes are RNA-guided RNA endonucleases and are the defining component of Type VI CRISPR systems 30. In contrast to Cas9 and Cas12, the primary activity of Cas13 proteins appears to be due to its trans-RNAse activity conferred by HEPN domains 47,48. These enzymes vary by the extent and bias of HEPN activity, having a strong influence on how they are used in diverse applications ranging from RNA-targeting to RNA diagnostics 49,50,51,52. Unlike Cas9 and Cas12 enzymes, the evolutionary origins of Cas13 enzymes remains unclear 30. These enzymes are organized into 4 subtypes, Cas13a-Cas13d, where characterization of Cas13c remains unknown (although assumed to target RNA). While these enzymes are generally capable of processing their own CRISPR array and function as standalone enzymes, they occasionally co-occur with additional proteins that appear co-functional 53,54,55.
The reported Cas13 tree was recreated from a recent report on Cas13 phylogeny 56. Briefly Cas13-annotated sequences from subtypes a-d were gathered from NCBI and GTDB r95 57using Hidden Markov Models. Sequences lacking two R/Q/N/K/H****H sequence motifs were assumed to be truncated proteins and removed. Sequences were clustered with CD-HIT v4.8.1 with length and sequence similarity cutoffs of 0.9 58. Sequences were aligned with MUSCLE v3.8.31, tree built with IQ-TREE v1.6.12, and visualized with iTOL 44,45,46. Trees were manually curated by pruning errant Cas13 leaves.
Phylogeny Download
Download the phylogenetic reconstruction source of Type VI members
Download the multiple sequence alignment source of the Type VI phylogenetic reconstruction
REFERENCES
- 1. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829
- 2. Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., van der Oost, J., & Koonin, E. V. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467–477. https://doi.org/10.1038/nrmicro2577
- 3. Chylinski, K., Le Rhun, A., & Charpentier, E. (2013). The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biology, 10(5), 726–737. https://doi.org/10.4161/rna.24321
- 4. Koonin, E. V., & Makarova, K. S. (2013). CRISPR-Cas. RNA Biology, 10(5), 679–686. https://doi.org/10.4161/rna.24022
- 5. Fonfara, I., Le Rhun, A., Chylinski, K., Makarova, K. S., Lécrivain, A.-L., Bzdrenga, J., Koonin, E. V., & Charpentier, E. (2013). Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Research, 42(4), 2577–2590. https://doi.org/10.1093/nar/gkt1074
- 6. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., van der Oost, J., … Koonin, E. V. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13(11), 722–736. https://doi.org/10.1038/nrmicro3569
- 7. Gasiunas, G., Young, J. K., Karvelis, T., Kazlauskas, D., Urbaitis, T., Jasnauskaite, M., Grusyte, M. M., Paulraj, S., Wang, P.-H., Hou, Z., Dooley, S. K., Cigan, M., Alarcon, C., Chilcoat, N. D., Bigelyte, G., Curcuru, J. L., Mabuchi, M., Sun, Z., Fuchs, R. T., … Siksnys, V. (2020). A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19344-1
- 8. Altae-Tran, H., Kannan, S., Demircioglu, F. E., Oshiro, R., Nety, S. P., McKay, L. J., Dlakić, M., Inskeep, W. P., Makarova, K. S., Macrae, R. K., Koonin, E. V., & Zhang, F. (2021). The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science, 374(6563), 57–65. https://doi.org/10.1126/science.abj6856
- 9. Aliaga Goltsman, D. S., Alexander, L. M., Lin, J.-L., Fregoso Ocampo, R., Freeman, B., Lamothe, R. C., Perez Rivas, A., Temoche-Diaz, M. M., Chadha, S., Nordenfelt, N., Janson, O. P., Barr, I., Devoto, A. E., Cost, G. J., Butterfield, C. N., Thomas, B. C., & Brown, C. T. (2022). Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-35257-7
- 10. Koonin, E. V., Gootenberg, J. S., & Abudayyeh, O. O. (2023). Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry. https://doi.org/10.1021/acs.biochem.3c00159
- 11. Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V., Sharp, P. A., & Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546), 186–191. https://doi.org/10.1038/nature14299
- 12. Müller, M., Lee, C. M., Gasiunas, G., Davis, T. H., Cradick, T. J., Siksnys, V., Bao, G., Cathomen, T., & Mussolino, C. (2016). Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Molecular Therapy, 24(3), 636–644. https://doi.org/10.1038/mt.2015.218
- 13. Harrington, L. B., Paez-Espino, D., Staahl, B. T., Chen, J. S., Ma, E., Kyrpides, N. C., & Doudna, J. A. (2017). A thermostable Cas9 with increased lifetime in human plasma. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01408-4
- 14. Chatterjee, S., Davies, M. J., Heller, S., Speight, J., Snoek, F. J., & Khunti, K. (2018). Diabetes structured self-management education programmes: a narrative review and current innovations. The Lancet Diabetes & Endocrinology, 6(2), 130–142. https://doi.org/10.1016/s2213-8587(17)30239-5
- 15. Acharya, S., Mishra, A., Paul, D., Ansari, A. H., Azhar, Mohd., Kumar, M., Rauthan, R., Sharma, N., Aich, M., Sinha, D., Sharma, S., Jain, S., Ray, A., Jain, S., Ramalingam, S., Maiti, S., & Chakraborty, D. (2019). Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proceedings of the National Academy of Sciences, 116(42), 20959–20968. https://doi.org/10.1073/pnas.1818461116
- 16. Edraki, A., Mir, A., Ibraheim, R., Gainetdinov, I., Yoon, Y., Song, C.-Q., Cao, Y., Gallant, J., Xue, W., Rivera-Pérez, J. A., & Sontheimer, E. J. (2019). A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing. Molecular Cell, 73(4), 714-726.e4. https://doi.org/10.1016/j.molcel.2018.12.003
- 17. Hu, Z., Wang, S., Zhang, C., Gao, N., Li, M., Wang, D., Wang, D., Liu, D., Liu, H., Ong, S.-G., Wang, H., & Wang, Y. (2020). A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope. PLOS Biology, 18(3), e3000686. https://doi.org/10.1371/journal.pbio.3000686
- 18. Schmidt, M. J., Gupta, A., Bednarski, C., Gehrig-Giannini, S., Richter, F., Pitzler, C., Gamalinda, M., Galonska, C., Takeuchi, R., Wang, K., Reiss, C., Dehne, K., Lukason, M. J., Noma, A., Park-Windhol, C., Allocca, M., Kantardzhieva, A., Sane, S., Kosakowska, K., … Coco, W. M. (2021). Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24454-5
- 19. Hu, Z., Zhang, C., Wang, S., Gao, S., Wei, J., Li, M., Hou, L., Mao, H., Wei, Y., Qi, T., Liu, H., Liu, D., Lan, F., Lu, D., Wang, H., Li, J., & Wang, Y. (2021). Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity. Nucleic Acids Research, 49(7), 4008–4019. https://doi.org/10.1093/nar/gkab148
- 20. Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S., Kaplan, M., Iavarone, A. T., Charpentier, E., Nogales, E., & Doudna, J. A. (2014). Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation. Science, 343(6176). https://doi.org/10.1126/science.1247997
- 21. Jiang, F., Zhou, K., Ma, L., Gressel, S., & Doudna, J. A. (2015). A Cas9–guide RNA complex preorganized for target DNA recognition. Science, 348(6242), 1477–1481. https://doi.org/10.1126/science.aab1452
- 22. Nishimasu, H., Cong, L., Yan, W. X., Ran, F. A., Zetsche, B., Li, Y., Kurabayashi, A., Ishitani, R., Zhang, F., & Nureki, O. (2015). Crystal Structure of Staphylococcus aureus Cas9. Cell, 162(5), 1113–1126. https://doi.org/10.1016/j.cell.2015.08.007
- 23. Fuchsbauer, O., Swuec, P., Zimberger, C., Amigues, B., Levesque, S., Agudelo, D., Duringer, A., Chaves-Sanjuan, A., Spinelli, S., Rousseau, G. M., Velimirovic, M., Bolognesi, M., Roussel, A., Cambillau, C., Moineau, S., Doyon, Y., & Goulet, A. (2019). Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6. Molecular Cell, 76(6), 922-937.e7. https://doi.org/10.1016/j.molcel.2019.09.012
- 24. Yamada, M., Watanabe, Y., Gootenberg, J. S., Hirano, H., Ran, F. A., Nakane, T., Ishitani, R., Zhang, F., Nishimasu, H., & Nureki, O. (2017). Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Molecular Cell, 65(6), 1109-1121.e3. https://doi.org/10.1016/j.molcel.2017.02.007
- 25. Hirano, S., Abudayyeh, O. O., Gootenberg, J. S., Horii, T., Ishitani, R., Hatada, I., Zhang, F., Nishimasu, H., & Nureki, O. (2019). Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09741-6
- 26. Sun, W., Yang, J., Cheng, Z., Amrani, N., Liu, C., Wang, K., Ibraheim, R., Edraki, A., Huang, X., Wang, M., Wang, J., Liu, L., Sheng, G., Yang, Y., Lou, J., Sontheimer, E. J., & Wang, Y. (2019). Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Molecular Cell, 76(6), 938-952.e5. https://doi.org/10.1016/j.molcel.2019.09.025
- 27. Hirano, H., Gootenberg, J. S., Horii, T., Abudayyeh, O. O., Kimura, M., Hsu, P. D., Nakane, T., Ishitani, R., Hatada, I., Zhang, F., Nishimasu, H., & Nureki, O. (2016). Structure and Engineering of Francisella novicida Cas9. Cell, 164(5), 950–961. https://doi.org/10.1016/j.cell.2016.01.039
- 28. Schuler, G., Hu, C., & Ke, A. (2022). Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Science, 376(6600), 1476–1481. https://doi.org/10.1126/science.abq7220
- 29. Kato, K., Okazaki, S., Kannan, S., Altae-Tran, H., Esra Demircioglu, F., Isayama, Y., Ishikawa, J., Fukuda, M., Macrae, R. K., Nishizawa, T., Makarova, K. S., Koonin, E. V., Zhang, F., & Nishimasu, H. (2022). Structure of the IscB–ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34378-3
- 30. Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas, Č., White, M. F., Yakunin, A. F., … Koonin, E. V. (2019). Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67–83. https://doi.org/10.1038/s41579-019-0299-x
- 31. Karvelis, T., Druteika, G., Bigelyte, G., Budre, K., Zedaveinyte, R., Silanskas, A., Kazlauskas, D., Venclovas, Č., & Siksnys, V. (2021). Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature, 599(7886), 692–696. https://doi.org/10.1038/s41586-021-04058-1
- 32. Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439. https://doi.org/10.1126/science.aar6245
- 33. Yan, W. X., Hunnewell, P., Alfonse, L. E., Carte, J. M., Keston-Smith, E., Sothiselvam, S., Garrity, A. J., Chong, S., Makarova, K. S., Koonin, E. V., Cheng, D. R., & Scott, D. A. (2019). Functionally diverse type V CRISPR-Cas systems. Science, 363(6422), 88–91. https://doi.org/10.1126/science.aav7271
- 34. Strecker, J., Ladha, A., Gardner, Z., Schmid-Burgk, J. L., Makarova, K. S., Koonin, E. V., & Zhang, F. (2019). RNA-guided DNA insertion with CRISPR-associated transposases. Science, 365(6448), 48–53. https://doi.org/10.1126/science.aax9181
- 35. Harrington, L. B., Burstein, D., Chen, J. S., Paez-Espino, D., Ma, E., Witte, I. P., Cofsky, J. C., Kyrpides, N. C., Banfield, J. F., & Doudna, J. A. (2018). Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 362(6416), 839–842. https://doi.org/10.1126/science.aav4294
- 36. Huang, C. J., Adler, B. A., & Doudna, J. A. (2022). A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Molecular Cell, 82(11), 2148-2160.e4. https://doi.org/10.1016/j.molcel.2022.04.020
- 37. Dmytrenko, O., Neumann, G. C., Hallmark, T., Keiser, D. J., Crowley, V. M., Vialetto, E., Mougiakos, I., Wandera, K. G., Domgaard, H., Weber, J., Gaudin, T., Metcalf, J., Gray, B. N., Begemann, M. B., Jackson, R. N., & Beisel, C. L. (2023). Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature, 613(7944), 588–594. https://doi.org/10.1038/s41586-022-05559-3
- 38. Bravo, J. P. K., Hallmark, T., Naegle, B., Beisel, C. L., Jackson, R. N., & Taylor, D. W. (2023). RNA targeting unleashes indiscriminate nuclease activity of CRISPR–Cas12a2. Nature, 613(7944), 582–587. https://doi.org/10.1038/s41586-022-05560-w
- 39. Pausch, P., Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C. A., Li, Z., Cress, B. F., Knott, G. J., Jacobsen, S. E., Banfield, J. F., & Doudna, J. A. (2020). CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science, 369(6501), 333–337. https://doi.org/10.1126/science.abb1400
- 40. Al-Shayeb, B., Skopintsev, P., Soczek, K. M., Stahl, E. C., Li, Z., Groover, E., Smock, D., Eggers, A. R., Pausch, P., Cress, B. F., Huang, C. J., Staskawicz, B., Savage, D. F., Jacobsen, S. E., Banfield, J. F., & Doudna, J. A. (2022). Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell, 185(24), 4574-4586.e16. https://doi.org/10.1016/j.cell.2022.10.020
- 41. Urbaitis, T., Gasiunas, G., Young, J. K., Hou, Z., Paulraj, S., Godliauskaite, E., Juskeviciene, M. M., Stitilyte, M., Jasnauskaite, M., Mabuchi, M., Robb, G. B., & Siksnys, V. (2022). A new family of CRISPR‐type V nucleases with C‐rich PAM recognition. EMBO Reports, 23(12). Portico. https://doi.org/10.15252/embr.202255481
- 42. Wu, W. Y., Mohanraju, P., Liao, C., Adiego-Pérez, B., Creutzburg, S. C. A., Makarova, K. S., Keessen, K., Lindeboom, T. A., Khan, T. S., Prinsen, S., Joosten, R., Yan, W. X., Migur, A., Laffeber, C., Scott, D. A., Lebbink, J. H. G., Koonin, E. V., Beisel, C. L., & van der Oost, J. (2022). The miniature CRISPR-Cas12m effector binds DNA to block transcription. Molecular Cell, 82(23), 4487-4502.e7. https://doi.org/10.1016/j.molcel.2022.11.003
- 43. Chen, W., Ma, J., Wu, Z., Wang, Z., Zhang, H., Fu, W., Pan, D., Shi, J., & Ji, Q. (2023). Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Molecular Cell. https://doi.org/10.1016/j.molcel.2023.06.014
- 44. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
- 45. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
- 46. Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301
- 47. Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B. T., Shmakov, S., Makarova, K. S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E. S., Koonin, E. V., & Zhang, F. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299). https://doi.org/10.1126/science.aaf5573
- 48. East-Seletsky, A., O’Connell, M. R., Knight, S. C., Burstein, D., Cate, J. H. D., Tjian, R., & Doudna, J. A. (2016). Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 538(7624), 270–273. https://doi.org/10.1038/nature19802
- 49. Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., & Zhang, F. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360(6387), 439–444. https://doi.org/10.1126/science.aaq0179
- 50. Myhrvold, C., Freije, C. A., Gootenberg, J. S., Abudayyeh, O. O., Metsky, H. C., Durbin, A. F., Kellner, M. J., Tan, A. L., Paul, L. M., Parham, L. A., Garcia, K. F., Barnes, K. G., Chak, B., Mondini, A., Nogueira, M. L., Isern, S., Michael, S. F., Lorenzana, I., Yozwiak, N. L., … Sabeti, P. C. (2018). Field-deployable viral diagnostics using CRISPR-Cas13. Science, 360(6387), 444–448. https://doi.org/10.1126/science.aas8836
- 51. Konermann, S., Lotfy, P., Brideau, N. J., Oki, J., Shokhirev, M. N., & Hsu, P. D. (2018). Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell, 173(3), 665-676.e14. https://doi.org/10.1016/j.cell.2018.02.033
- 52. O’Connell, M. R. (2019). Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR–Cas Systems. Journal of Molecular Biology, 431(1), 66–87. https://doi.org/10.1016/j.jmb.2018.06.029
- 53. Smargon, A. A., Cox, D. B. T., Pyzocha, N. K., Zheng, K., Slaymaker, I. M., Gootenberg, J. S., Abudayyeh, O. A., Essletzbichler, P., Shmakov, S., Makarova, K. S., Koonin, E. V., & Zhang, F. (2017). Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Molecular Cell, 65(4), 618-630.e7. https://doi.org/10.1016/j.molcel.2016.12.023
- 54. Yan, W. X., Chong, S., Zhang, H., Makarova, K. S., Koonin, E. V., Cheng, D. R., & Scott, D. A. (2018). Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Molecular Cell, 70(2), 327-339.e5. https://doi.org/10.1016/j.molcel.2018.02.028
- 55. VanderWal, A. R., Park, J.-U., Polevoda, B., Nicosia, J. K., Molina Vargas, A. M., Kellogg, E. H., & O’Connell, M. R. (2023). Csx28 is a membrane pore that enhances CRISPR-Cas13b–dependent antiphage defense. Science, 380(6643), 410–415. https://doi.org/10.1126/science.abm1184
- 56. Adler, B. A., Hessler, T., Cress, B. F., Lahiri, A., Mutalik, V. K., Barrangou, R., Banfield, J., & Doudna, J. A. (2022). Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nature Microbiology, 7(12), 1967–1979. https://doi.org/10.1038/s41564-022-01258-x
- 57. Parks, D. H., Chuvochina, M., Rinke, C., Mussig, A. J., Chaumeil, P.-A., & Hugenholtz, P. (2021). GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Research, 50(D1), D785–D794. https://doi.org/10.1093/nar/gkab776
- 58. Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565