AsCas12a
Cas ID
RESOURCES
- Species Acidaminococcus sp. BV3L6link
- Genome Assembly NZ_AWUR01000016.1link
- Gene ID HMPREF1246_RS03730link
- Protein ID WP_021736722.1link
- UniProtKB U2UMQ6link
- CDD TIGR04330link
- Nucleotide Sequence FASTA 1
- Amino Acid Sequence FASTA 1
- crRNA (Ex) FASTA 1
- sgRNA Sequence (Ex) FASTA 1
- tracrRNA Sequence (Ex) FASTA 1
- Direct Repeat (Native) FASTA 1
CLASSIFICATION
- Cas ID 3.4.3
- Nuclease Activity Target dsDNA (or ssDNA) + trans-ssDNA activity. Staggered cut.
- Targeting Requirement 5' PAM
- gRNA and Multiplexability crRNA
- Class 2 subtype V-A
- PAM or PFS TTTN
DESCRIPTION
Summary
In 2015, AsCas12a (previously AsCpf1) was characterized as an RNA-guided endonuclease capable of efficient mammalian genome-editing activity 1 and has subsequently become a staple in the CRISPR toolbox. Recognizing a thymine-rich 5'-TTTV-3' PAM on the 5' side of the protospacer (on the non-target strand), AsCas12a utilizes a single catalytic site to cleave RNA-complementary double-stranded DNA (cis cleavage), as well as indiscriminately cleave single-stranded DNA (trans cleavage), 3 upon RNA-guided DNA binding. This has led to its use in rapid and highly sensitive nucleic acid detection 4 3 . AsCas12a and related orthologs LbCas12a and FnCas12a generate staggered cuts within the protospacer but distal to the PAM 1 . Because AsCas12a does not require tracrRNA and can process the CRISPR array into crRNAs internally, it is a good tool for multiplex editing 5 .
Applications
Administering AsCas12a complexed with a guide has biotechnological applications in healthcare, agriculture, and fundamental research. CRISPR-based treatments employing AsCas12a Ultra, an engineered variant of AsCas12a, are currently under investigation in human clinical trials 6 . Target-activated trans DNase activity has also been harnessed for detection of specific viral nucleic acid sequences 4 in human patient specimens 3 .
Additionally, by leveraging AsCas12a's ability to introduce targeted genetic disruptions, scientists have built successful platforms for genetic screening 7 , multiplex editing 8 , and model system creation 6 9 . AsCas12a, and related enzyme LbCas12a, have also been harnessed for agricultural purposes, improving plant immunity and nutritional content for staple crops like rice 10 . A more comprehensive listing of all agricultural Cas12a-based engineering can be found in other resources 11 , but several examples may be found in the experimental section of CasPEDIA.
Experimental Considerations
When using AsCas12a and related orthologs, such as LbCas12a, MbCas12a and FnCas12a, several experimental considerations should be taken into account.
Multiple software tools, such as CHOPCHOP 12 and CRISPOR 13 , exist for guide design 14 to help identify suitable target sites throughout the genomes of several model organisms. The T-rich PAM requirements of AsCas12a allow it to complement the PAM restriction to G-rich genomic sites in Cas9 editing 2 . The protospacer-adjacent motif (PAM) sequence (TTTV) of Cas12a lies 5' of the target site on the non-target strand, in contrast to Cas9, whose PAM lies 3' of the target site on the non-target strand. It is important to note that the individual "staggered" cuts reported in the original discovery paper 1 represent only a subset of the cuts made by AsCas12a in an RNA-complementary DNA target; in reality, AsCas12a forms an ~5-nt gap in the non-target strand and an ~2-nt gap in the target strand 15 .
AsCas12a's ability to process its own pre-crRNA facilitates multiplex applications, as multiple crRNAs can be synthesized in one transcript off of a single promoter. If the experimentalist's goal is to induce homology-directed repair (HDR), Cas12a may be a particularly efficient choice of CRISPR endonuclease 16 17 18 . It is hypothesized that the efficiency with which Cas12a induces HDR stems from its staggered cut and the speed with which it releases the PAM-distal cleavage product 16 .
Engineered versions of AsCas12a exist that broaden its PAM targeting 19 , improve its nuclease activity 6 , or improve its specificity 20 . These variants may be better suited for certain genome-engineering goals than WT AsCas12a. Because Cas12a homologs cleave both the non-target strand and target strand using a single active site 21 , these enzymes cannot be trivially engineered to form DNA nicks in the way that Cas9 can 22 . A variant of AsCas12a originally reported to act as a nickase (AsCas12a R1226A) 23 was later revealed to have double-stranded DNase activity that was dramatically slowed relative to WT AsCas12a 15 .
Tool_Type | Tool | Is_Tool_Applicable | Notes | Citation |
---|---|---|---|---|
Delivery and Expression | RNP | Yes | Established to work as WT and with variants with improved nuclease activity | 6 |
Delivery and Expression | Lenti | Yes | Combinatorial genetic screening | 24 |
Delivery and Expression | AAV | No | exceeds ideal packaging limits unless split into two AAV | NaN |
Delivery and Expression | LNP | Yes | Cas12a Ultra delivered as RNP using LNPs | 25 |
Delivery and Expression | EDV | Yes | In principle, but not yet demonstrated | NaN |
Delivery and Expression | Other_Delivery | Cell penetrating peptide | A5K-TAT peptide delivered in trans (10-20 fold stiochiometric excess) | 26 |
Delivery and Expression | Other_Delivery | Cell penetrating peptide | TAT-HA2 fusion peptide delivered in trans | 27 |
Guide Design | Guide_Design_Algorithm | NaN | CRISPOR; CHOPCHOP guide design algorithims | 13 12 |
Guide Design | Plasmid_Design | NaN | Can produce multiple gRNA on one promoter to facilitate easy targeting of multiple loci. | 8 |
Application_Type | Description | Pharmaceutical_or_Product_Name | NCT | Responsible_Party | Delivery_Mechanism | In_Vivo_or_Ex_Vivo_Editing | Citation_or_Publications |
---|---|---|---|---|---|---|---|
Human_Clinical_Trial | Ex Vivo: EDIT-301 is a phase 1/2 clinical trial to treat Sickle Cell Disease and related Hemoglobinopathies by modifying hemopoietic stem cells | EDIT-301 | NCT: NCT04853576 | Editas Medicine, Inc. | RNP Nucleofection | Ex Vivo | NaN |
Plant_Agriculture | Staple crops: Rice 10 , Maize 10 , Soybean 28 | NaN | NaN | NaN | NaN | NaN | NaN |
Plant_Agriculture | Other: Tobacco 28 | NaN | NaN | NaN | NaN | NaN | NaN |
Non_Human_Primate | EDIT-201 is in preclinical development for NK cell therapy targeting solid tumors (No longer under development) | EDIT-201 | NaN | Editas Medicine, Inc. | RNP Nucleofection | Ex vivo | NaN |
Variant_Name | Description | citations |
---|---|---|
enAsCas12a (E174R/S542R/K548R) | Improved nuclease activity (indels) and specificity vs WT in mammalian cells20 | 20 |
AsCas12a Ultra (M537R/F870L) | Dramatically improved nuclease activity (indels) in mammalian cells6 | 6 |
RVR AsCas12a (TATV) (S542R/K548V/N552R) and RR AsCas12a (TYCV) (S542R/K607R) | AsCas12a variants capable of targeting with new PAM restrictions, TATV and TYCV, respectively19 | 19 |
AsCas12a Plus (E174R/R951K/R955A) | Improved nuclease activity (indels) in mammalian cells29 | 29 |
KK AsCas12a (R951K, R955K) and KA (R951K,R955K) | Precursor variants to AsCas12a Plus, KK and KA AsCas12a variants exhibit comparable on-target cleavage but lower activites with gRNA mismatches29 | 29 |
NUCLEOTIDE SEQUENCE
PROTEIN STRUCTURE
PFAM ID | Description |
---|---|
PF18510 | NUC |
PF18501 | REC1 |
PF18516 | RuvC_1 |
Feature Type | Start | End | Ligand | Description | Citations |
---|---|---|---|---|---|
Chain | 1 | 1307 | CRISPR-associated endonuclease Cas12a | ||
DNA binding | 599 | 607 | PAM-binding on target DNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
DNA binding | 780 | 783 | Target DNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
DNA binding | 951 | 968 | Target DNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
DNA binding | 1051 | 1053 | Target DNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 1 | 35 | WED-I (OBD-I) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 36 | 320 | REC1 (helical-I) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 321 | 526 | WED-II (helical-II) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 527 | 598 | WED-II (OBD-I) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 599 | 718 | PI (LHD) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 719 | 884 | WED-III (OBD-III) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 885 | 940 | RuvC-I | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 941 | 957 | Bridge helix | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 958 | 1066 | RuvC-II | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 1067 | 1262 | Nuclease domain | PubMed_ID:27114038;PubMed_ID:27444870 | |
Region | 1263 | 1307 | RuvC-III | PubMed_ID:27114038;PubMed_ID:27444870 | |
Coiled coil | 74 | 106 | |||
Active site | 800 | 800 | For pre-crRNA processing | ||
Active site | 809 | 809 | For pre-crRNA processing | ||
Active site | 860 | 860 | For pre-crRNA processing | ||
Active site | 908 | 908 | For DNase activity of RuvC domain | PubMed_ID:27114038 | |
Active site | 993 | 993 | For DNase activity of RuvC domain | PubMed_ID:27114038 | |
Active site | 1226 | 1226 | For DNase activity of nuclease domain | PubMed_ID:27114038 | |
Active site | 1263 | 1263 | For DNase activity of RuvC domain | PubMed_ID:27114038 | |
Binding site | 47 | 51 | crRNA (ChEBI:CHEBI:134528) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Binding site | 175 | 176 | crRNA (ChEBI:CHEBI:134528) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Binding site | 307 | 310 | crRNA (ChEBI:CHEBI:134528) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Binding site | 752 | 761 | crRNA (ChEBI:CHEBI:134528) | PubMed_ID:27114038;PubMed_ID:27444870 | |
Binding site | 806 | 808 | crRNA (ChEBI:CHEBI:134528) | PubMed_ID:27114038 | |
Site | 18 | 18 | Binds crRNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
Site | 167 | 167 | Binds PAM on target DNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
Site | 192 | 192 | Binds crRNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
Site | 382 | 382 | Binds crRNA-target DNA heteroduplex | PubMed_ID:27114038;PubMed_ID:27444870 | |
Site | 548 | 548 | Binds PAM on target DNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
Site | 607 | 607 | Binds sequence-specific recognition of both target and non-target strand bases in PAM | PubMed_ID:27114038;PubMed_ID:27444870 | |
Helix | 361 | 363 | PDB_ID:5XH6 | ||
Site | 872 | 872 | Binds crRNA | PubMed_ID:27114038;PubMed_ID:27444870 | |
Site | 1014 | 1014 | Binds target DNA | PubMed_ID:27114038 | |
Mutagenesis | 167 | 167 | Wild-type to slightly improved guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 176 | 176 | Decreased guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 192 | 192 | Decreased guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 382 | 382 | Nearly complete loss of guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 548 | 548 | Decreased guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 604 | 604 | Decreased guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 607 | 607 | Nearly complete loss of guided indel formation, probable loss of PAM recognition. | PubMed_ID:27114038 | |
Mutagenesis | 780 | 780 | Nearly complete loss of guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 783 | 783 | Complete loss of guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 908 | 908 | No longer provides resistance to plasmids or phage in E.coli. | PubMed_ID:38261981 | |
Mutagenesis | 908 | 908 | Complete loss of guided indel formation; neither DNA strand is cleaved in vitro. | PubMed_ID:27114038 | |
Mutagenesis | 951 | 951 | Nearly complete loss of guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 955 | 955 | Partial loss of guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 958 | 958 | Partial loss of guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 993 | 993 | Complete loss of guided indel formation; neither DNA strand is cleaved in vitro. | PubMed_ID:27114038 | |
Mutagenesis | 1226 | 1226 | Nearly complete loss of guided indel formation; nickase cleaves only the non-target DNA strand in vitro. | PubMed_ID:27114038 | |
Mutagenesis | 1228 | 1228 | Wild-type to slightly improved guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 1235 | 1235 | About half loss of guided indel formation. | PubMed_ID:27114038 | |
Mutagenesis | 1263 | 1263 | Nearly complete loss of guided indel formation; neither DNA strand is cleaved in vitro. | PubMed_ID:27114038 | |
Helix | 4 | 6 | PDB_ID:5XH6 | ||
Beta strand | 8 | 11 | PDB_ID:5XH6 | ||
Beta strand | 13 | 23 | PDB_ID:5XH6 | ||
Helix | 27 | 34 | PDB_ID:5XH6 | ||
Helix | 36 | 68 | PDB_ID:5XH6 | ||
Helix | 74 | 86 | PDB_ID:5XH6 | ||
Helix | 89 | 111 | PDB_ID:5XH6 | ||
Beta strand | 115 | 117 | PDB_ID:5KK5 | ||
Helix | 119 | 129 | PDB_ID:5XH6 | ||
Turn | 130 | 133 | PDB_ID:5XH6 | ||
Helix | 135 | 138 | PDB_ID:5XH6 | ||
Helix | 141 | 146 | PDB_ID:5XH6 | ||
Helix | 153 | 160 | PDB_ID:5XH6 | ||
Turn | 161 | 164 | PDB_ID:5XH6 | ||
Helix | 166 | 169 | PDB_ID:5XH6 | ||
Helix | 170 | 180 | PDB_ID:5XH6 | ||
Helix | 189 | 195 | PDB_ID:5XH6 | ||
Helix | 197 | 214 | PDB_ID:5XH6 | ||
Helix | 217 | 229 | PDB_ID:5XH6 | ||
Helix | 237 | 240 | PDB_ID:5XH6 | ||
Helix | 243 | 248 | PDB_ID:5XH6 | ||
Beta strand | 249 | 251 | PDB_ID:5XH6 | ||
Helix | 252 | 263 | PDB_ID:5XH6 | ||
Helix | 277 | 286 | PDB_ID:5XH6 | ||
Helix | 290 | 297 | PDB_ID:5XH6 | ||
Helix | 326 | 342 | PDB_ID:5XH6 | ||
Helix | 345 | 355 | PDB_ID:5XH6 | ||
Turn | 356 | 358 | PDB_ID:5XH6 | ||
Helix | 368 | 370 | PDB_ID:5XH6 | ||
Helix | 371 | 378 | PDB_ID:5XH6 | ||
Beta strand | 379 | 381 | PDB_ID:5XH6 | ||
Helix | 384 | 394 | PDB_ID:5XH6 | ||
Helix | 403 | 415 | PDB_ID:5XH6 | ||
Helix | 420 | 427 | PDB_ID:5XH6 | ||
Helix | 429 | 451 | PDB_ID:5XH6 | ||
Helix | 461 | 481 | PDB_ID:5XH6 | ||
Helix | 494 | 507 | PDB_ID:5XH6 | ||
Helix | 509 | 521 | PDB_ID:5XH6 | ||
Beta strand | 531 | 533 | PDB_ID:5XH7 | ||
Turn | 538 | 541 | PDB_ID:5XH6 | ||
Helix | 546 | 548 | PDB_ID:5XH6 | ||
Helix | 549 | 552 | PDB_ID:5XH6 | ||
Beta strand | 554 | 559 | PDB_ID:5XH6 | ||
Beta strand | 562 | 567 | PDB_ID:5XH6 | ||
Beta strand | 587 | 597 | PDB_ID:5XH6 | ||
Helix | 601 | 607 | PDB_ID:5XH6 | ||
Turn | 608 | 611 | PDB_ID:5XH6 | ||
Helix | 613 | 621 | PDB_ID:5XH6 | ||
Beta strand | 626 | 628 | PDB_ID:5XH6 | ||
Beta strand | 632 | 634 | PDB_ID:5XH6 | ||
Beta strand | 636 | 638 | PDB_ID:5XH6 | ||
Helix | 640 | 646 | PDB_ID:5XH6 | ||
Beta strand | 649 | 652 | PDB_ID:5XH6 | ||
Beta strand | 654 | 656 | PDB_ID:5KK5 | ||
Helix | 657 | 663 | PDB_ID:5XH6 | ||
Helix | 666 | 686 | PDB_ID:5XH6 | ||
Turn | 688 | 692 | PDB_ID:5XH6 | ||
Helix | 701 | 703 | PDB_ID:5XH6 | ||
Helix | 707 | 714 | PDB_ID:5XH6 | ||
Helix | 715 | 718 | PDB_ID:5XH6 | ||
Beta strand | 719 | 727 | PDB_ID:5XH6 | ||
Helix | 728 | 736 | PDB_ID:5XH6 | ||
Beta strand | 737 | 739 | PDB_ID:5B43 | ||
Beta strand | 741 | 746 | PDB_ID:5XH6 | ||
Helix | 748 | 750 | PDB_ID:5XH6 | ||
Beta strand | 751 | 753 | PDB_ID:5KK5 | ||
Helix | 760 | 768 | PDB_ID:5XH6 | ||
Helix | 771 | 775 | PDB_ID:5XH6 | ||
Beta strand | 778 | 781 | PDB_ID:5XH6 | ||
Beta strand | 786 | 790 | PDB_ID:5XH6 | ||
Beta strand | 804 | 807 | PDB_ID:5XH6 | ||
Beta strand | 812 | 817 | PDB_ID:5B43 | ||
Helix | 820 | 830 | PDB_ID:5XH6 | ||
Helix | 840 | 845 | PDB_ID:5XH6 | ||
Helix | 846 | 848 | PDB_ID:5XH6 | ||
Beta strand | 851 | 853 | PDB_ID:5XH6 | ||
Helix | 862 | 864 | PDB_ID:5XH6 | ||
Beta strand | 868 | 878 | PDB_ID:5XH6 | ||
Beta strand | 879 | 884 | PDB_ID:5KK5 | ||
Helix | 888 | 898 | PDB_ID:5XH6 | ||
Beta strand | 904 | 908 | PDB_ID:5XH6 | ||
Beta strand | 911 | 914 | PDB_ID:5KK5 | ||
Beta strand | 916 | 920 | PDB_ID:5XH6 | ||
Beta strand | 926 | 931 | PDB_ID:5XH6 | ||
Beta strand | 933 | 935 | PDB_ID:5XH6 | ||
Helix | 940 | 956 | PDB_ID:5XH6 | ||
Helix | 965 | 986 | PDB_ID:5XH6 | ||
Beta strand | 989 | 993 | PDB_ID:5XH6 | ||
Helix | 1011 | 1024 | PDB_ID:5XH6 | ||
Beta strand | 1038 | 1041 | PDB_ID:5KK5 | ||
Beta strand | 1057 | 1059 | PDB_ID:5XH6 | ||
Beta strand | 1062 | 1065 | PDB_ID:5XH6 | ||
Beta strand | 1070 | 1073 | PDB_ID:5XH6 | ||
Turn | 1075 | 1077 | PDB_ID:5XH6 | ||
Helix | 1085 | 1087 | PDB_ID:5XH6 | ||
Helix | 1091 | 1099 | PDB_ID:5XH6 | ||
Beta strand | 1101 | 1106 | PDB_ID:5XH6 | ||
Turn | 1108 | 1110 | PDB_ID:5XH6 | ||
Beta strand | 1113 | 1118 | PDB_ID:5XH6 | ||
Helix | 1123 | 1125 | PDB_ID:5XH6 | ||
Beta strand | 1134 | 1140 | PDB_ID:5XH6 | ||
Beta strand | 1145 | 1147 | PDB_ID:5XH6 | ||
Beta strand | 1153 | 1155 | PDB_ID:5XH6 | ||
Beta strand | 1159 | 1161 | PDB_ID:5XH6 | ||
Beta strand | 1174 | 1176 | PDB_ID:5XH6 | ||
Helix | 1178 | 1188 | PDB_ID:5XH6 | ||
Helix | 1200 | 1206 | PDB_ID:5XH6 | ||
Helix | 1209 | 1223 | PDB_ID:5XH6 | ||
Beta strand | 1226 | 1229 | PDB_ID:5XH6 | ||
Turn | 1230 | 1233 | PDB_ID:5XH6 | ||
Beta strand | 1234 | 1242 | PDB_ID:5XH6 | ||
Beta strand | 1248 | 1250 | PDB_ID:5XH6 | ||
Helix | 1251 | 1253 | PDB_ID:5XH6 | ||
Helix | 1262 | 1283 | PDB_ID:5XH6 | ||
Beta strand | 1284 | 1287 | PDB_ID:5XH6 | ||
Helix | 1295 | 1306 | PDB_ID:5XH6 |
PDB ID: 5B43
- 1. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., & Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163(3), 759–771. https://doi.org/10.1016/j.cell.2015.09.038
- 2. Kim, H. K., Song, M., Lee, J., Menon, A. V., Jung, S., Kang, Y.-M., Choi, J. W., Woo, E., Koh, H. C., Nam, J.-W., & Kim, H. (2016). In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nature Methods, 14(2), 153–159. https://doi.org/10.1038/nmeth.4104
- 3. Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439. https://doi.org/10.1126/science.aar6245
- 4. Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., & Zhang, F. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360(6387), 439–444. https://doi.org/10.1126/science.aaq0179
- 5. Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E. M., Winblad, N., Choudhury, S. R., Abudayyeh, O. O., Gootenberg, J. S., Wu, W. Y., Scott, D. A., Severinov, K., van der Oost, J., & Zhang, F. (2016). Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nature Biotechnology, 35(1), 31–34. https://doi.org/10.1038/nbt.3737
- 6. Zhang, L., Zuris, J. A., Viswanathan, R., Edelstein, J. N., Turk, R., Thommandru, B., Rube, H. T., Glenn, S. E., Collingwood, M. A., Bode, N. M., Beaudoin, S. F., Lele, S., Scott, S. N., Wasko, K. M., Sexton, S., Borges, C. M., Schubert, M. S., Kurgan, G. L., McNeill, M. S., … Vakulskas, C. A. (2021). AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24017-8
- 7. DeWeirdt, P. C., Sanson, K. R., Sangree, A. K., Hegde, M., Hanna, R. E., Feeley, M. N., Griffith, A. L., Teng, T., Borys, S. M., Strand, C., Joung, J. K., Kleinstiver, B. P., Pan, X., Huang, A., & Doench, J. G. (2020). Optimization of AsCas12a for combinatorial genetic screens in human cells. Nature Biotechnology, 39(1), 94–104. https://doi.org/10.1038/s41587-020-0600-6
- 8. Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D., & Platt, R. J. (2019). Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nature Methods, 16(9), 887–893. https://doi.org/10.1038/s41592-019-0508-6
- 9. Lee, J. G., Ha, C. H., Yoon, B., Cheong, S.-A., Kim, G., Lee, D. J., Woo, D.-C., Kim, Y.-H., Nam, S.-Y., Lee, S., Sung, Y. H., & Baek, I.-J. (2019). Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-38732-2
- 10. Malzahn, A. A., Tang, X., Lee, K., Ren, Q., Sretenovic, S., Zhang, Y., Chen, H., Kang, M., Bao, Y., Zheng, X., Deng, K., Zhang, T., Salcedo, V., Wang, K., Zhang, Y., & Qi, Y. (2019). Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 17(1). https://doi.org/10.1186/s12915-019-0629-5
- 11. Bandyopadhyay, A., Kancharla, N., Javalkote, V. S., Dasgupta, S., & Brutnell, T. P. (2020). CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.584151
- 12. Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., & Valen, E. (2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research, 47(W1), W171–W174. https://doi.org/10.1093/nar/gkz365
- 13. Concordet, J.-P., & Haeussler, M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 46(W1), W242–W245. https://doi.org/10.1093/nar/gky354
- 14. Hanna, R. E., & Doench, J. G. (2020). Design and analysis of CRISPR–Cas experiments. Nature Biotechnology, 38(7), 813–823. https://doi.org/10.1038/s41587-020-0490-7
- 15. Cofsky, J. C., Karandur, D., Huang, C. J., Witte, I. P., Kuriyan, J., & Doudna, J. A. (2020). CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. ELife, 9. CLOCKSS. https://doi.org/10.7554/elife.55143
- 16. Singh, D., Mallon, J., Poddar, A., Wang, Y., Tippana, R., Yang, O., Bailey, S., & Ha, T. (2018). Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proceedings of the National Academy of Sciences, 115(21), 5444–5449. https://doi.org/10.1073/pnas.1718686115
- 17. Hewes, A. M., Sansbury, B. M., & Kmiec, E. B. (2020). The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template. Genes, 11(10), 1160. https://doi.org/10.3390/genes11101160
- 18. Moreno-Mateos, M. A., Fernandez, J. P., Rouet, R., Vejnar, C. E., Lane, M. A., Mis, E., Khokha, M. K., Doudna, J. A., & Giraldez, A. J. (2017). CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01836-2
- 19. Gao, L., Cox, D. B. T., Yan, W. X., Manteiga, J. C., Schneider, M. W., Yamano, T., Nishimasu, H., Nureki, O., Crosetto, N., & Zhang, F. (2017). Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 35(8), 789–792. https://doi.org/10.1038/nbt.3900
- 20. Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., & Joung, J. K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 37(3), 276–282. https://doi.org/10.1038/s41587-018-0011-0
- 21. Swarts, D. C., van der Oost, J., & Jinek, M. (2017). Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Molecular Cell, 66(2), 221-233.e4. https://doi.org/10.1016/j.molcel.2017.03.016
- 22. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829
- 23. Yamano, T., Nishimasu, H., Zetsche, B., Hirano, H., Slaymaker, I. M., Li, Y., Fedorova, I., Nakane, T., Makarova, K. S., Koonin, E. V., Ishitani, R., Zhang, F., & Nureki, O. (2016). Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 165(4), 949–962. https://doi.org/10.1016/j.cell.2016.04.003
- 24. Gier, R. A., Budinich, K. A., Evitt, N. H., Cao, Z., Freilich, E. S., Chen, Q., Qi, J., Lan, Y., Kohli, R. M., & Shi, J. (2020). High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17209-1
- 25. Suzuki, Y., Onuma, H., Sato, R., Sato, Y., Hashiba, A., Maeki, M., Tokeshi, M., Kayesh, M. E. H., Kohara, M., Tsukiyama-Kohara, K., & Harashima, H. (2021). Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. Journal of Controlled Release, 330, 61–71. https://doi.org/10.1016/j.jconrel.2020.12.013
- 26. Foss, D. V., Muldoon, J. J., Nguyen, D. N., Carr, D., Sahu, S. U., Hunsinger, J. M., Wyman, S. K., Krishnappa, N., Mendonsa, R., Schanzer, E. V., Shy, B. R., Vykunta, V. S., Allain, V., Li, Z., Marson, A., Eyquem, J., & Wilson, R. C. (2023). Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nature Biomedical Engineering, 7(5), 647–660. https://doi.org/10.1038/s41551-023-01032-2
- 27. Zhang, Z., Baxter, A. E., Ren, D., Qin, K., Chen, Z., Collins, S. M., Huang, H., Komar, C. A., Bailer, P. F., Parker, J. B., Blobel, G. A., Kohli, R. M., Wherry, E. J., Berger, S. L., & Shi, J. (2023). Efficient engineering of human and mouse primary cells using peptide-assisted genome editing. Nature Biotechnology. https://doi.org/10.1038/s41587-023-01756-1
- 28. Kim, H., Kim, S.-T., Ryu, J., Kang, B.-C., Kim, J.-S., & Kim, S.-G. (2017). CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications, 8(1). https://doi.org/10.1038/ncomms14406
- 29. Huang, H., Huang, G., Tan, Z., Hu, Y., Shan, L., Zhou, J., Zhang, X., Ma, S., Lv, W., Huang, T., Liu, Y., Wang, D., Zhao, X., Lin, Y., & Rong, Z. (2022). Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity. BMC Biology, 20(1). https://doi.org/10.1186/s12915-022-01296-1